
SDR for space systems: 
overview and perspectives

Laurent.Franck@telecom-bretagne.eu 
!

Télécom Bretagne / Institut Mines Télécom

IEEE International Workshop on 
Metrology for AeroSpace 

!
May 29-30, 2014 - Benevento, Italy



L. Franck

Introduction
• Software Defined Radio (SDR) is a technological concept 

where the processing of RF signals is implemented in re-
programmable units rather than application-specific integrated 
circuits (ASICs) 

• Re-programmable units encompasses digital signal 
processors (DSP), field programmable gate arrays (FPGA) 
and general purpose processors (GPP or CPU) 

• It is made possible thanks to Moore’s law (and a bit of 
science and entrepreneurship too) 

• We’ll discuss here about the applicability of SDR to space 
systems with a strong focus on satellite communications 
(satcom)
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Introduction
• Devising satcom equipments is challenging: 

• Space is a tough environment (temperature variation, 
vacuum, radiations, scarce energy supply) 

• Getting there is techno-demanding (vibration, acceleration) 
and costly: about 1/4 of the overall satellite cost [≈ 1/4 x $500 
millions ]* is dedicated to launch operations 

• Once there, always there: a satellite lifetime is about 15 years* 

• And “space” can be quite far from Earth (36 000 km for the 
geostationary orbit) 

• At Ku-band (around 12 GHz) that makes a 200 dB free 
space loss

3
* For big satcom geostationary satellites
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Introduction

• Selling satcom services is also challenging: 

• The markets and business models are different from 
terrestrial telecommunications: niche and governmental 
markets (except for TV and radio broadcasting) 

• There is strong competition with terrestrial technologies 
where the satellite and terrestrial market intersect  

➡ Could SDR be the swiss army knife of satcoms ?
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SDR for satcom

5

User terminals

Telecommunication payloads

Teaching activities

Speciality payloads

Earth stations

“One thing to rule them all ?”

(Ground instrumentation)
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User terminals
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Categories of user terminals

• Portable terminals 

!

• Mobile terminals 

!

• Transportable terminals 

!

• Fixed terminals
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User terminals
• The SDR technology is makes possible the following 

capabilities: 

• Cognitive radio: adaptivity to various spectrum conditions (as 
a result of prior sensing) in terms of frequency, bandwidth 
and emitted power, including the possibility to share 
spectrum 

• For example on the 17.7-19.7 GHz band, the fixed satellite 
service (FSS) and fixed service (FS) are both primary 

• Integration of multiple waveforms (i.e., transmission schemes) 
into a single hardware platform to (a) save space and cost, 
(b) ensure upgradability and (c) foster co-operative 
communications schemes based on ancillary terrestrial 
components
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User terminals: example
• The Inmarsat BGAN service provides data rates up to 492 kbit/s with a 

worldwide coverage 

• Support for real-time (called streaming, 384 kbit/s)  
and non-real time IP-based services as well as voice services 

• GateHouse has developed a software BGAN implementation compliant 
with the SCA (Software Communication Architecture) standard and the 
BGAN specification 

• This software can be run  
on SCA compliant 
SDR platforms

9

[Source: Inmarsat]

The GateHouse BGAN waveform for SDR is a complete waveform for the Inmarsat 

BGAN satellite system

BGAN Waveform for SDR

Product Sheet

The waveform is based on the existing GateHouse BGAN 
Protocol Stack, already incorporated in a large number of 
BGAN terminals from several suppliers.

The waveform and the SCA compliant hardware will 
form a complete radio for land, maritime or aeronautical 
use.

The waveform can be certified as SCA compliant, and 
is designed for military as well as civilian use. BGAN sup-
ports major VPN products and encryption standards.

The waveform is type approved by Inmarsat.

Technical description

 

The radio will be built on two main components:

�� 2�D42�T`^a]ZR_e�a]ReW`c^�
�� EYV�8ReV9`fdV�382?�hRgVW`c^�

The SCA platform contains the hardware, including typical 
SDR items such as RF, FPGA, DSP and GPP and the SCA 
core framework. 

The GateHouse BGAN waveform contains all the neces-
sary software. 

The platform must support the characteristics of the  
BGAN system, such as: Operation in the L-Band, the receive 
band is 1525 MHz to 1559 MHz, the transmit band is 1626.5 
MHz to 1660.5 MHz. These bands may be slightly extended 
in the near future, in order to meet the demands from new 
users. Channels are aligned to a 1.25 kHz grid in both forward 
and return directions. The BGAN system is a full duplex 
system, that is, the platform must be able to receive and 

transmit at the same time. The duplex distance, i.e. the RX-TX 
separation, is not fixed. The BGAN system utilizes a number 
of channel bandwidths, from 10 kHz to 200 kHz.

Architecture

The main architecture of the radio is shown here: 

The BGAN waveform contains two integrated compo-

nents: 

�� EYV�Ac`e`T`]�DeRT\��
�� EYV�AYjdZTR]�=RjVc�

The waveform includes all the software necessary to 
use the BGAN services. The waveform includes code for 
FPGAs, DSPs and GPPs.

The waveform is able to handle all UE (user equipment) 
classes; at start up the actual UE class will be configured.

The waveform is developed to be easily portable across 
SDR platforms and will as far as possible only require 
standard SCA interfaces. 

The waveform has an interface for antenna pointing 
and control. 

The Physical Layer is a complete, high performance 
physical layer that is able to handle all UE classes. 

Protocol Stack

Core Framework

Analog Hardware

Antenna

Physical Layer

FPGA DSP GPP

  BGAN Waveform

  SCA Platform

[Source: GateHouse]
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Conclusions on user terminals
• The use of SDR for user terminals is a promising direction 

• The signal bandwidth to process is usually limited  

• For terminals, the exposure to changing standards, hence 
the need to adapt is strong 

• Using SDR for user terminals adresses the following stakes: 

• To decrease the CAPEX of accessing satellite services by 
favouring convergence between terrestrial and satellite 
terminal hardware technologies 

• To decrease the OPEX of accessing satellite services by 
favouring seamless hybridisation of terrestrial and satellite 
access

10
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Earth stations
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Categories of Earth stations

• Gateways / hubs /
teleports  

!

• TTC stations
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Earth stations
• Gateways/hubs and teleports deal with complex processing of 

large bandwidth of spectrum 

• Possibly not the best case for SDR  

• On the other hand, SDR technology is well positioned for the 
development of specialised receivers that are tailored to 
situations where a dedicated ASIC development would be too 
costly 

• Example: in the DIGIDSAT ESA project, an antenna tracking 
system is developed for end-of-line geo satellites that drift to 
inclined orbit. SDR is used for a building a dedicated beacon 
receiver that actuates antenna pointing

13
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Earth stations

• For small satellites (typically low earth orbit) such as cubesats, 
amateur sats or nanosats, SDR-based Earth stations are 
popular  

• From an SDR standpoint, it is a favourable case since (a) 
signals are narrowband and (b) transmission schemes are 
simple (AFSK, BPSK modulations)  

• Example: the OSAGS ground station network is based on Ettus 
Research USRPs

14
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Earth stations: example

15
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 6.1 THEORETICAL BOX

The information are displayed in three different panels. The first one is dedicated to the 
features of the system. Both, satellite and Earth station, are characterised. The two others permit to 
inform about the theoretical values of attenuation according to the conditions of propagation: rain or 
clear sky. More information about this point are given in the first report.

 6.2 EXPERIMENTAL BOX

The overall  work performed during this second part is materialised in this section of the 
program. We would like to create an automatic tool permitting the acquisition, the record and the 
analysis of the signal. These objectives are reached.

In the first panel the user could control the USRP, see in real time the signal, its power and 
position and also choose the frequency with which measurements are saved and the emplacement 
of the record.

Looking at  the  second panel,  the  user  could  read  data  previously  recorded.  It  is  even 
possible to display on the same graphic two records in order to compare them.

On the last panel, the power of the received signal is no longer displayed. We rather build a 
graphic with the attenuation suffered from signal during its propagation. According to the values 
obtained, and comparing them to the theoretical  ones, we deduce and indicate to the user the 
condition of propagation of the record: clear sky or rain.

Figure 3: General view of the interface in LabView.

• A simple SDR Ku-band beacon receiver  

• The receiver includes frequency tracking to cope with cheap COTS 
components in the LNB
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Conclusions on Earth stations

• SDR best suited to design of dedicated receivers or ground 
instrumentation for controlling facilities 

• Or for LEO small satellites Earth stations

16
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Payloads

[Source : O3b networks]
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Telecommunication payloads
• Transparent “Bent pipe” payload architectures are an heritage 

from broadcast services (e.g., TV and radio broadcast):

18

Receiver IMUX 

uplink
HPA

HPA

HPA

HPA

OMUX downlink

Transponder = channels of fixed 36 or 72 MHz bandwidth 
One “fat” carrier per transponder

Ku or C
 band

The HPA can be operated close to the saturation point

➡ Current usage is shifting away from this paradigm
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Telecommunication payloads
• Current usages and satellites display the following characteristics : 

• Directed to “telecom” (i.e., bi-directional, point-to-point) services 

• The business model changes dramatically and the cost of transmitted 
Mbit is a strategic issue 

• The rate of change of terrestrial standards for networks and services is 
higher than the typical lifetime of a satellite  

• Forward and return link show different constraints and characteristics 

• Based on multi-beam architectures 

• For example, KA-SAT features 82 user spot beams over Europe at large 

• Operating in the Ka-band band and above 

• The Ka-band suffers from tougher environment impairments (than the 
Ku-band). These may vary on a carrier by carrier basis

19
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Telecommunication payloads
• These characteristics are summarised in two challenges: 

• Increasing payload capabilities 

• In terms of technology figure of merits (e.g., mass, 
consumption and thermal characteristics) 

• In terms of transmission figure of merits (e.g., spectral 
efficiency) 

• Increasing payload flexibility 

• In terms of adaptivity to evolving trafic geographic distribution 

• In terms of adaptivity to evolving trafic characteristics 

➡ Onboard processing contributes to tackling these challenges

20
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Telecommunication payloads
• Categorisation of onboard processing: 

• Digital signal processing of the incoming carriers to 
optimise subsequent channelised HPA operations (e.g., 
digital transparent processors implementing filtering and 
carrier routing) 

• Digital signal processing of the incoming carriers to 
accommodate to a flexible definition of channels (in terms 
of bandwidth and central frequency) 

• On-board demodulation for regenerative processing (e.g., 
different modulations on the uplink and downlink) or 
higher layer switching (i.e., mesh architectures) 

➡ SDR contributes to reconfigurable digital processing for 
flexible payloads and favours reusability, cutting down 
costs

21
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Telecommunication payloads: example
• Legacy payloads: the frequency plan determines the (fixed) 

switching policy among uplink and downlink channels 

22
[Source: JSAT int’l]
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Telecommunication payloads: example
• Digital transparent processing enables programmable switching & 

duplicating at carrier granularity among uplink and downlink spots

23

 
2

 
Fig.1: Digital Transparent Processor functional architecture. 

 

 
GC division offers great flexibility to customers for the 
selection of the signal type suitable to the service, the only 
constraint  being the bandwidth. 

In Figure 1 a functional DTP architecture is presented; as 
outlined the main processor elements are: 

 

• Down-conversion, ADC (Analog-to-Digital 
Converter) and DAC (Digital-to-Analog 
Converter); 

• Frequency compensation and sub_channel 
demultiplexing by means of suitable digital low-
pass filters; 

• Switching matrix that performs the channelization 
function by means of a fine digital filtering of sub-
channels; as previously described, the bandwidth is 
variable and is programmable by ground 
commands.  

The switch function performs a full connectivity routing at 

sub-channel level between the input and output ports; this is 
the core section of the DTP and provides a flexible 
management of RF spectrum (each up-link traffic channel 
can be moved to a different position in the down-link 
frequency plan). 

It has to be outlined that all the DTP simulations have been 
performed using a frequency down-scaling of a third-order 
factor; scaling has been requested in order to decrease the 
overall simulations computational load 

 

3. RX SUBSYSTEM 
 
In Figure 2 the block diagram of a RX section is shown. 
Each 36 MHz sub-band is IF processed (filtered and 
amplified) in order to be suitable for ADC input 
requirements. The pass-band filtering is such to reject 
adjacent sub-bands of same or adjacent channels and it is 
implemented in SAW (Surface Acoustic Wave) technology. 
Due to sub-band FDMA organization (a maximum of 72 
carriers if all the CG are A Type, a minimum of 9 Carriers if 
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Speciality payloads
• Speciality payloads implement missions that are different from 

the typical “receive, amplify and transmit” telecom payloads 

• For example, Telemetry & Telecommand (TM/TC) is present in 
every satellite and sends health information (TM) about the 
satellite to Earth and receives orders from the control centre 
(TC) 

• Other examples may be embarked as primary/secondary 
payloads in geostationary or non-geostationary platforms 

• Telemetry data links for observation satellites, scientific 
payloads, search and rescue, … 

• These payloads are also candidates for using SDR technology 
in order to benefit from its flexibility

24
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Speciality payloads: examples
• The following example is a Telemetry, Tracking and Control 

(TT&C) transceiver developed from Com Dev and embarked by 
the FORMOSAT-7 satellite series (LEO satellites for weather 
prediction through atmospheric sounding) 

• Communication modulation is implemented  
in an FPGA to offer flexibility depending on  
the mission and mission phases 

• The SCAN NASA testbed aims to test three SDR-based 
payloads that are compatible with NASA’s TDRSS system 

25
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Speciality payloads: example
• AIS (Automatic Identification System) is beaconing system for tracking 

ships 

• Beacons are broadcasted (≈ 160 MHz at 9.6 kbit/s) by ships and 
collected by land stations located 

• While it was not initially designed for, it turned out that beacons could be 
collected by LEO satellites in order to provide a more global coverage 

• Collisions among beacons and weak signals are the two main 
challenges  

• The Aalborg University has devised an SDR AIS receiver which is 
onboard the AAUSAT3 cubesat

26
Fig. 3. The SDR AIS receiver. The colored part is the SDR based receiver.
The remaining part is a traditional AIS receiver, which has been included for
performance comparason.

144

8.6 Demodulator

The received symbol Y j = (Yj,1, Yj,2)T is determined in the time
interval

t 2 [jT, (j + 1)T ).

This time interval can also be written as

t = jT + τ, τ 2 [0, T ).

The demodulation for τ = t � jT 2 [0, T ), j = 0, 1, 2, . . . , can
then be implemented as follows:

PSfrag replacements

Y (t)

Yj,1

Yj,2

T√

2
T

cos(2πf1τ )

cos(2πf2τ )

√

2
T

∫ T

0 (.)dτ

√

2
T

∫ T

0 (.)dτ

Land, Fleury: Digital Modulation 1 NavCom

Fig. 4. Textbook matched filter implementation of demodulator [2, p. 144]

however is insignificant compared to running a demodulator
bank.

A short description of the elements in method 2:
• 2 x Channel Pre-filter. Each wide enough to include clock

drift and Doppler Shift.
• 2 x Message and Frequency Detection, used to tune

channel filter and matched filter per message.
• 2 x Channel filter, tuned with the estimated Fc per

detected message.
• 2 x Matched filter demodulator, tuned with the estimated

Fc per detected message.
• 2 x Bit-sync. Adaptive based on zero-crossing NCO.
• 2 x Decision rule. Soft decision by adjusting threshold

from zero when needed.

III. RESULTS

In the following the results obtained from the SDR based
AIS receiver since launch on February 25th 2013 will be
analysed.

Fig. 5. Overview of the SDR algorithms, which has been improved for
space-base monitoring

A. Reception

The default AIS decoder on the satellite, as described above
is currently implemented as a store and process algorithm. This
means, that the satellite first samples 1 second of data, and then
process it. Once finished it requests a new second of data and
processes it. This means, that the receivers online time is only
around 5%-10%. However, even with this limited online time,
the receiver is still capable of receiving and correctly decoding
around 10.000 AIS messages per day.

A plot of most of the ships received and successfully
downloaded through the Aalborg ground station can be seen
in fig. 6 at the end.

Fig. 6. Plot of ship positions received globally by the SDR based AIS
receiver. Each triangle represents one received ship position.

As seen with other satellite based AIS receivers, the problem
with the extended FOV, as described earlier, is clearly seen in
very crouded waters These includes e.g. the Mediterranean
Sea, near the east coast of China and the east coast of USA.
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Conclusions on payloads
• As far as payloads are concerned, the role of SDR is a two-fold 

question 

• Where to put the boundary between analog and digital 
processing ? 

• What is the added value of SDR for onboard (digital) processing ? 

• The answers depend on the available technology and the mission 
requirements 

• The present opportunity for SDR-enabled payloads is where the 
requirements show a combination of limited throughput and 
complex processing 

!

• Note: antenna processing is not covered here
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Teaching activities
• Context: “Space Communication Systems” programme for the 

3rd (last) year of engineering degree & advanced master 

• SDR devices used for small projects (teams of two students 
working during 70 h) and workshops 

• Our SDR platforms 

• 4 x National Instruments USRP 2920 (50-2200 MHz, 20 MHz 
of bandwidth, Gigabit Ethernet transport) 

• 2 x National Instruments VST 5644R (65-6000 MHz, 80 MHz 
of bandwidth, instrument grade, PXIe transport) 

• Programmable with LabVIEW

29
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Teaching activities: example
• Receiving weather images from space 

• Based on NOAA polar orbiting satellites (APT mode) 

• Weather images (line by line scans) are downlinked to Earth at 
137 MHz with an FM + AM modulation 

• One line = 2 x 909 pixels, 1 pixel = 16 km2 

• Extending our LEO/amateur satellite station, the students 
developed an SDR-based receiver and decoder for weather 
images 

• Pointing/tracking of the satellite 

• Signal RX and demodulation 

• Image processing
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Teaching activities: example

31



L. Franck

Teaching activities: example
• Flipped teaching for DVB/S2 lectures 

• Prior to attending lectures on DVB/S2, students go through an 
introductory workshop 

• The workshop is extensively based on our lab DVB/S2 platform: 

• Co-located DVB/S2 modems for remote and hub sites 

• An SDR-based channel emulator for geostationary link [covered 
in a separate presentation] 

• The topics covered are: spectral efficiency, C/N0 calculation and 
measurement, protocol overhead, TCP performance over 
geostationary links 

• Conditions similar to “real transmission” are reproduced thanks 
to SDR channel emulation
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Teaching activities: example
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Conclusions on teaching activities

• It creates “creates opportunities for projects not possible 
before” and it “contributes to a better understanding of the 
lectures” (students say) 

• Having to choose between MATLAB or USRP + LavVIEW, 40 % 
of our students would go for USRPs 

• It also calls for multi-disciplinary teaching teams 

• SDR = RF instrumentation + (real-time) programming
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Overall conclusions
• Software defined radio offer many 

opportunities for satcom 
applications: 

• Cognitive or advanced RF 
processing 

• Reconfiguration during 
operations 

• Reusability of existing 
hardware/software (from similar 
products or by favouring 
convergence with terrestrial 
technologies) 

• Specific developments not 
affordable by means of ASIC 
technology

35

• The associated challenges are 

• To bridge the gap between 
terrestrial and space qualified 
SDR technology 

• Including for ADCs & DACs 

• To devise powerful development 
frameworks and methodologies 

• To be adventurous 
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Thank you


