SDR for space systems: overview and perspectives

IEEE International Workshop on Metrology for AeroSpace

May 29-30, 2014 - Benevento, Italy

Laurent.Franck@telecom-bretagne.eu

Télécom Bretagne / Institut Mines Télécom

Introduction

- Software Defined Radio (SDR) is a technological concept where the processing of RF signals is implemented in reprogrammable units rather than application-specific integrated circuits (ASICs)
 - Re-programmable units encompasses digital signal processors (DSP), field programmable gate arrays (FPGA) and general purpose processors (GPP or CPU)
 - It is made possible thanks to Moore's law (and a bit of science and entrepreneurship too)
- We'll discuss here about the applicability of SDR to space systems with a strong focus on satellite communications (satcom)

Introduction

- Devising satcom equipments is challenging:
 - Space is a tough environment (temperature variation, vacuum, radiations, scarce energy supply)
 - Getting there is techno-demanding (vibration, acceleration) and costly: about 1/4 of the overall satellite cost [≈ 1/4 x \$500 millions]* is dedicated to launch operations
 - Once there, always there: a satellite lifetime is about 15 years*
 - And "space" can be quite far from Earth (36 000 km for the geostationary orbit)
 - At Ku-band (around 12 GHz) that makes a 200 dB free space loss

* For big satcom geostationary satellites

Introduction

- Selling satcom services is also challenging:
 - The markets and business models are different from terrestrial telecommunications: niche and governmental markets (except for TV and radio broadcasting)
 - There is strong competition with terrestrial technologies where the satellite and terrestrial market intersect
- Could SDR be the swiss army knife of satcoms ?

SDR for satcom

"One thing to rule them all ?"

User terminals

VEHICULE SATELLITE

Categories of user terminals

Portable terminals

Mobile terminals

Transportable terminals ——

Fixed terminals

HURAYA

THURAYA

User terminals

- The SDR technology is makes possible the following capabilities:
 - Cognitive radio: adaptivity to various spectrum conditions (as a result of prior sensing) in terms of frequency, bandwidth and emitted power, including the possibility to share spectrum
 - For example on the 17.7-19.7 GHz band, the fixed satellite service (FSS) and fixed service (FS) are both primary
 - Integration of multiple waveforms (i.e., transmission schemes) into a single hardware platform to (a) save space and cost, (b) ensure upgradability and (c) foster co-operative communications schemes based on ancillary terrestrial components

User terminals: example

- The Inmarsat BGAN service provides data rates up to 492 kbit/s with a worldwide coverage
 - Support for real-time (called streaming, 384 kbit/s) and non-real time IP-based services as well as voi
- GateHouse has developed a software BGAN implementation compliant with the SCA (Software Communication Architecture) standard and the BGAN specification
 - This software can be run on SCA compliant SDR platforms

[Source: Inmarsat]

[Source: GateHouse]

Conclusions on user terminals

- The use of SDR for user terminals is a promising direction
 - The signal bandwidth to process is usually limited
 - For terminals, the exposure to changing standards, hence the need to adapt is strong
- Using SDR for user terminals adresses the following stakes:
 - To decrease the CAPEX of accessing satellite services by favouring convergence between terrestrial and satellite terminal hardware technologies
 - To decrease the OPEX of accessing satellite services by favouring seamless hybridisation of terrestrial and satellite access

Earth stations

L. Franck

Categories of Earth stations

TTC stations

[Source: Elta]

L. Franck

Earth stations

- Gateways/hubs and teleports deal with complex processing of large bandwidth of spectrum
 - Possibly not the best case for SDR
- On the other hand, SDR technology is well positioned for the development of specialised receivers that are tailored to situations where a dedicated ASIC development would be too costly
 - Example: in the DIGIDSAT ESA project, an antenna tracking system is developed for end-of-line geo satellites that drift to inclined orbit. SDR is used for a building a dedicated beacon receiver that actuates antenna pointing

Earth stations

- For small satellites (typically low earth orbit) such as cubesats, amateur sats or nanosats, SDR-based Earth stations are popular
 - From an SDR standpoint, it is a favourable case since (a) signals are narrowband and (b) transmission schemes are simple (AFSK, BPSK modulations)
- Example: the OSAGS ground station network is based on Ettus Research USRPs

Earth stations: example

- A simple SDR Ku-band beacon receiver
 - The receiver includes frequency tracking to cope with cheap COTS components in the LNB

L. Franck

Conclusions on Earth stations

- SDR best suited to design of dedicated receivers or ground instrumentation for controlling facilities
- Or for LEO small satellites Earth stations

[Source : O3b networks]

• Transparent "Bent pipe" payload architectures are an heritage from broadcast services (e.g., TV and radio broadcast):

One "fat" carrier per transponder

The HPA can be operated close to the saturation point

Current usage is shifting away from this paradigm

- Current usages and satellites display the following characteristics :
 - Directed to "telecom" (i.e., bi-directional, point-to-point) services
 - The business model changes dramatically and the cost of transmitted Mbit is a strategic issue
 - The rate of change of terrestrial standards for networks and services is higher than the typical lifetime of a satellite
 - Forward and return link show different constraints and characteristics
 - Based on multi-beam architectures
 - For example, KA-SAT features 82 user spot beams over Europe at large
 - Operating in the Ka-band band and above
 - The Ka-band suffers from tougher environment impairments (than the Ku-band). These may vary on a carrier by carrier basis

- These characteristics are summarised in two challenges:
 - Increasing payload capabilities
 - In terms of technology figure of merits (e.g., mass, consumption and thermal characteristics)
 - In terms of transmission figure of merits (e.g., spectral efficiency)
 - Increasing payload flexibility
 - In terms of adaptivity to evolving trafic geographic distribution
 - In terms of adaptivity to evolving trafic characteristics

Onboard processing contributes to tackling these challenges

- Categorisation of onboard processing:
 - <u>Digital</u> signal processing of the incoming carriers to optimise subsequent channelised HPA operations (e.g., digital transparent processors implementing filtering and carrier routing)
 - <u>Digital</u> signal processing of the incoming carriers to accommodate to a flexible definition of channels (in terms of bandwidth and central frequency)
 - On-board <u>demodulation</u> for regenerative processing (e.g., different modulations on the uplink and downlink) or higher layer switching (i.e., mesh architectures)
- SDR contributes to reconfigurable digital processing for flexible payloads and favours reusability, cutting down costs

Telecommunication payloads: example

• Legacy payloads: the frequency plan determines the (fixed) switching policy among uplink and downlink channels

[Source: JSAT int'l]

Telecommunication payloads: example

• Digital transparent processing enables programmable switching & duplicating at carrier granularity among uplink and downlink spots

SDR makes it possible to have reconfigurable processing in the digital realm

Speciality payloads

- Speciality payloads implement missions that are different from the typical "receive, amplify and transmit" telecom payloads
- For example, Telemetry & Telecommand (TM/TC) is present in every satellite and sends health information (TM) about the satellite to Earth and receives orders from the control centre (TC)
- Other examples may be embarked as primary/secondary payloads in geostationary or non-geostationary platforms
 - Telemetry data links for observation satellites, scientific payloads, search and rescue, ...
- These payloads are also candidates for using SDR technology in order to benefit from its flexibility

Speciality payloads: examples

- The following example is a Telemetry, Tracking and Control (TT&C) transceiver developed from Com Dev and embarked by the FORMOSAT-7 satellite series (LEO satellites for weather prediction through atmospheric sounding)
 - Communication modulation is implemented
 in an FPGA to offer flexibility depending on
 the mission and mission phases 1/2

- [Source : ESA

Speciality payloads: example

- AIS (Automatic Identification System) is beaconing system for tracking ships
 - Beacons are broadcasted (≈ 160 MHz at 9.6 kbit/s) by ships and collected by land stations located
- While it was not initially designed for, it turned out that beacons could be collected by LEO satellites in order to provide a more global coverage
 - Collisions among beacons and weak signals are the two main challenges
- The Aalborg University has devised an SDR AIS receiver which is onboard the AAUSAT3 cubesat

University.

Conclusions on payloads

- As far as payloads are concerned, the role of SDR is a two-fold question
 - Where to put the boundary between analog and digital processing ?
 - What is the added value of SDR for onboard (digital) processing ?
- The answers depend on the available technology and the mission requirements
 - The present opportunity for SDR-enabled payloads is where the requirements show a combination of limited throughput and complex processing

• Note: antenna processing is not covered here

Teaching activities

- Context: "Space Communication Systems" programme for the 3rd (last) year of engineering degree & advanced master
- SDR devices used for small projects (teams of two students working during 70 h) and workshops
- Our SDR platforms
 - 4 x National Instruments USRP 2920 (50-2200 MHz, 20 MHz of bandwidth, Gigabit Ethernet transport)
 - 2 x National Instruments VST 5644R (65-6000 MHz, 80 MHz of bandwidth, instrument grade, PXIe transport)
 - Programmable with LabVIEW

- Receiving weather images from space
 - Based on NOAA polar orbiting satellites (APT mode)
 - Weather images (line by line scans) are downlinked to Earth at 137 MHz with an FM + AM modulation
 - One line = 2×909 pixels, 1 pixel = 16 km^2
 - Extending our LEO/amateur satellite station, the students developed an SDR-based receiver and decoder for weather images
 - Pointing/tracking of the satellite
 - Signal RX and demodulation
 - Image processing

L. Franck

- Flipped teaching for DVB/S2 lectures
 - Prior to attending lectures on DVB/S2, students go through an introductory workshop
 - The workshop is extensively based on our lab DVB/S2 platform:
 - Co-located DVB/S2 modems for remote and hub sites
 - An SDR-based channel emulator for geostationary link [covered in a separate presentation]
 - The topics covered are: spectral efficiency, C/N0 calculation and measurement, protocol overhead, TCP performance over geostationary links
 - Conditions similar to "real transmission" are reproduced thanks to SDR channel emulation

Conclusions on teaching activities

- It creates "creates opportunities for projects not possible before" and it "contributes to a better understanding of the lectures" (students say)
- Having to choose between MATLAB or USRP + LavVIEW, 40 % of our students would go for USRPs
- It also calls for multi-disciplinary teaching teams
 - SDR = RF instrumentation + (real-time) programming

Overall conclusions

- Software defined radio offer many opportunities for satcom applications:
 - Cognitive or advanced RF
 processing
 - Reconfiguration during
 operations
 - Reusability of existing hardware/software (from similar products or by favouring convergence with terrestrial technologies)
 - Specific developments not affordable by means of ASIC technology

- The associated challenges are
 - To bridge the gap between terrestrial and space qualified SDR technology
 - Including for ADCs & DACs
 - To devise powerful development frameworks and methodologies
 - To be adventurous

Thank you

L. Franck